Contrast gain control in first- and second-order motion perception.
نویسندگان
چکیده
A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.
منابع مشابه
Three-systems theory of human visual motion perception: review and update
Lu and Sperling [Vision Res. 35, 2697 (1995)] proposed that human visual motion perception is served by three separate motion systems: a first-order system that responds to moving luminance patterns, a second-order system that responds to moving modulations of feature types—stimuli in which the expected luminance is the same everywhere but an area of higher contrast or of flicker moves, and a t...
متن کاملMotion transparency from opposing luminance modulated and contrast modulated gratings
Two luminance gratings of identical orientation and opposite directions of motion are seen as moving across one another (i.e. moving transparently) only if they differ in spatial frequency (SF) by a factor of four or more. Identical SF gratings produce counter-phase flicker. This suggests that opposite motions cancel each other at the level of motion detection. Here we show that motion transpar...
متن کاملContrast-reversing global-motion stimuli reveal local interactions between first- and second-order motion signals
Motion perception appears to be mediated by, at least, two systems: a first-order and a second-order system. To investigate the degree of interaction between these systems, we used a contrast-reversing global-motion stimulus in which the signal dots reverse their contrast polarity as they move. In response to such a stimulus, fullwave-rectifying second-order units would signal motion in the dis...
متن کامل5 A Systems Analysis of Visual MotionPerception
Using new psychophysical methods, it recently has become possible to isolate and measure three systems of human motion perception. The first-order system responds to moving luminance patterns. The second-order system responds to moving modulations of feature types. The first-and second-order systems are primarily monocular, sensitive, and fast. A third-order system computes motion from a salien...
متن کاملA substantial and unexpected enhancement of motion perception in autism.
Atypical perceptual processing in autism spectrum disorder (ASD) is well documented. In addition, growing evidence supports the hypothesis that an excitatory/inhibitory neurochemical imbalance might underlie ASD. Here we investigated putative behavioral consequences of the excitatory/inhibitory imbalance in the context of visual motion perception. As stimulus size increases, typical observers e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 13 12 شماره
صفحات -
تاریخ انتشار 1996